Теория игр

 Теория игр

Содержание
ВВЕДЕНИЕ
ГЛАва 1.Теоретико-математические аспекты теории игр
ГЛАВА 2. ПЕРЕЧИСЛЕНИЕ ХАРАКТЕРИСТИЧЕСКИХ ФУНКЦИЙ С МАЛЫМ ЧИСЛОМ ИГРОКОВ.
ГЛАВА 3. ПРИМЕНЕНИЕ ТЕОРИИ ИГР В МИКРОЭКОНОМИКЕ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ
Казахстан встал на путь глубоких экономических преобра¬зований, сложный и противоречивый переход к рыночным отношениям, многообразию форм собственности и хозяйство¬вания.
Эффективное ведение производства в новых условиях за¬висит от многих факторов.
Сердцевина любого хозяйственного механизма и любого экономического учения — теория цен и практика их форми¬рования.
С точки зрения истории экономики, цена является самой первой категорией, поскольку экономика как система спе¬цифических социальных связей возникает в виде актов не¬посредственного обмена товарами, то есть в виде товарного выражения.
Способ определения цены характеризует природу рынка и саму экономическую систему. Цены определяют структу¬ру производства, оказывают решающее воздействие на дви¬жение материальных потоков, распределение товарной мас¬сы, уровень благосостояния населения. Однако, это по-пре¬жнему одна из наименее разработанных категорий, о чем свидетельствует дискуссионный характер публикаций, по¬священных вопросам теории цены и практики ценообразо¬вания.
Предметом дискуссии являются различные аспекты, имеющие тео-ретический и практический характер. Это относится к воз¬можности применения методов регулирования цен, определе¬нию систем ценообразования и методов калькулирования зат¬рат, целесообразности использования цен внутри предприя¬тия, порядку распределения дохода между структурными подразделениями, филиалами.
РЕШЕНИЕ ДАННЫХ ВОПРОСОВ ВЛИЯЕТ НА ХАРАКТЕР ФОРМИРОВА¬НИЯ ПРОИЗВОДСТВЕННЫХ ОТНОШЕНИЙ МЕЖДУ СУБЪЕКТАМИ НА РАЗ¬НЫХ УРОВНЯХ ХОЗЯЙСТВОВАНИЯ. ПОИСК ПУТЕЙ СОЗДАНИЯ МЕХА¬НИЗМА АДАПТАЦИИ К РЫНОЧНЫМ ОТНОШЕНИЯМ, ПОВЫШЕНИЯ КОН¬КУРЕНТОСПОСОБНОСТИ ПРЕДПРИЯТИЙ ПОСРЕДСТВОМ ИСПОЛЬЗОВАНИЯ ЭКОНОМИЧЕСКОГО МЕХАНИЗМА ЦЕНОВОГО РЕГУЛИРОВАНИЯ СТАНОВИТ¬СЯ ЕЩЕ БОЛЕЕ АКТУАЛЬНЫМ.
ДАННАЯ РАБОТА ПОСВЯЩЕНА ПРИМЕНЕНИЮ ТЕОРИИ ИГР В МИКРОЭКОНОМИКЕ. ДАННАЯ ТЕОРИЯ ПРЕДПОЛАГАЕТ ФОРМИРОВАНИЯ ПОСЛЕДОВАТЕЛЬНОСТИ ДЕЯТЕЛЬНОСТИ НЕСКОЛЬКИХ ЭКОНОМИЧЕСКИХ СУБЪЕКТОВ В УСЛОВИЯХ КОНКУРЕНТНОЙ БОРЬБЫ.
АКТУАЛЬНОСТЬ ДАННОЙ ТЕМЫ ОБУСЛОВЛЕНА СТАНОВЛЕНИЕМ РЫНОЧНЫХ ОТНОШЕНИЙ В КАЗАХСТАНЕ.
ТЕОРЕТИКО-МЕТОДОЛОГИЧЕСКОЙ БАЗОЙ ДЛЯ НАПИСАНИЯ ДАННОЙ РАБОТЫ ПОСЛУЖИЛИ:
- РАБОТЫ КАЗАХСТАНСКИХ ЭКОНОМИСТОВ, КАК Н.К. МАМЫРОВ, Ж.А. КУЛЕКЕЕВА И ДР.
- РАБОТЫ РОССИЙСКИХ НАУЧНЫХ ДЕЯТЕЛЕЙ, КАК А.Р. ЛЕОНТЬЕВ, В.В. НЕСТОР И ДР.
- МАТЕРИАЛЫ СОБРАННЫЕ СО СРЕДСТВ МАССОВОЙ ИНФОРМАЦИИ
РАБОТА СОСТОИТ ИЗ ТРЕХ ГЛАВ, ВВЕДЕНИЯ, ЗАКЛЮЧЕНИЯ И СПИСКА ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.
ГЛАва 1.Теоретико-математические аспекты теории игр
Кооперативные игры получаются в тех случаях, когда, в игре n игроков разрешается образовывать определённые коалиции. Обозначим через N множество всех игроков, N ={1, 2, ..., n}, а через K – любое его подмножество. Пусть игроки из K договариваются между собой о совместных действиях и, таким образом, образуют одну коалицию. Очевидно, что число таких коалиций, состоящих из r игроков, равно числу сочетаний из n по r , то есть , а число всевозможных коалиций равно
= 2n – 1.
Из этой формулы видно, что число всевозможных коалиций значительно растёт в зависимости от числа всех игроков в данной игре. Для исследования этих игр необходимо учитывать все возможные коалиции, и поэтому трудности исследований возрастают с ростом n. Образовав коалицию, множество игроков K действует как один игрок против остальных игроков, и выигрыш этой коалиции зависит от применяемых стратегий каждым из n игроков.
Функция u, ставящая в соответствие каждой коалиции K наибольший, уверенно получаемый его выигрыш u(K), называется характеристической функцией игры. Так, например, для бескоалиционной игры n игроков u(K) может получиться, когда игроки из множества K оптимально действуют как один игрок против остальных N\K игроков, образующих другую коалицию (второй игрок).
Характеристическая функция u называется простой, если она принимает только два значения: 0 и 1. Если характеристическая функция u простая, то коалиции K, для которых u(K)=1, называются выигрывающими, а коалиции K, для которых u(K) = 0, – проигрывающими.
Если в простой характеристической функции u выигрывающими являются те и только те коалиции, которые содержат фиксированную непустую коалицию R, то характеристическая функция u, обозначаемая в этом случае через uR, называется простейшей.
Содержательно простые характеристические функции возникают, например, в условиях голосования, когда коалиция является выигрывающей, если она собирает более половины голосов (простое большинство) или не менее двух третей голосов (квалифицированное большинство).
Более сложным является пример оценки результатов голосования в Совете безопасности ООН, где выигрывающими коалициями являются все коалиции, состоящие из всех пяти постоянных членов Совета плюс ещё хотя бы один непостоянный член, и только они.
Простейшая характеристическая функция появляется, когда в голосующем коллективе имеется некоторое “ядро”, голосующее с соблюдением правила “вето”, а голоса остальных участников оказываются несущественными.
Обозначим через uG характеристическую функцию бескоалиционной игры. Эта функция обладает следующими свойствами :
1) 1) персональность
uG(Æ) = 0,
т.е. коалиция, не содержащая ни одного игрока, ничего не выигрывает;
2) 2) супераддитивность
uG(KÈL) ³ uG(K) + uG(L), если K, L Ì N, KÇL ¹ Æ,
т.е. общий выигрыш коалиции не меньше суммарного выигрыша всех участников коалиции;
3) 3) дополнительность
uG(K) + u(N\K) = u(N)
т.е. для бескоалиционной игры с постоянной суммой сумма выигрышей коалиции и остальных игроков должна равняться общей сумме выигрышей всех игроков.
Распределение выигрышей (делёж) игроков должно удовлетворять следующим естественным условиям: если обозначить через xi выигрыш i-го игрока, то, во-первых, должно удовлетворяться условие индивидуальной рациональности
xi ³ u( i ), для i ÎN
т.е. любой игрок должен получить выигрыш в коалиции не меньше, чем он получил бы, не участвуя в ней (в противном случае он не будет участвовать в коалиции); во-вторых, должно удовлетворяться условие коллективной рациональности
= u(N)
т.е. сумма выигрышей игроков должна соответствовать возможностям (если сумма выигрышей всех игроков меньше, чем u(N), то игрокам незачем вступать в коалицию; если же потребовать, чтобы сумма выигрышей была больше, чем u(N), то это значит, что игроки должны делить между собой сумму большую, чем у них есть).
Таким образом, вектор x = (x1, ..., xn), удовлетворяющий условиям индивидуальной и коллективной рациональности, называется дележём в условиях характеристической функции u.
Система {N, u}, состоящая из множества игроков, характеристической функции над этим множеством и множеством дележей, удовлетворяющих соотношениям (2) и (3) в условиях характеристической функции, называется классической кооперативной игрой.
Из этих определений непосредственно вытекает следующая

Теорема. Чтобы вектор x = (x1, ..., xn) был дележём в классической кооперативной игре {N, u},
необходимо и достаточно, чтобы
xi = u( i ) + ai, (iÎN)
причём
ai ³ 0 (iÎN)

= u(N) –
В бескоалиционных играх исход формируется в результате действий тех самых игроков, которые в этой ситуации получают свои выигрыши. Исходом в кооперативной игре является делёж, возникающий не как следствие действия игроков, а как результат их соглашений. Поэтому в кооперативных играх сравниваются не ситуации, как это имеет место в бескоалиционных играх, а дележи, и сравнение это носит более сложный характер.
Кооперативные игры считаются существенными, если для любых коалиций K и L выполняется неравенство
u(K) + u(L) < u(KÈL),
т.е. в условии супераддитивности выполняется строгое неравенство. Если же в условии супераддитивности выполняется равенство
u(K) + u(L) = u(KÈL),
т.е. выполняется свойство аддитивности, то такие игры называются несущественными.
Справедливы следующие свойства :
1) для того чтобы характеристическая функция была аддитивной (кооперативная игра – несущественной), необходимо и достаточно выполнение следующего равенства:
= u(N)
2) в несущественной игре имеется только один делёж
{u(1) , u(2) , ... , u(n) };
3) в существенной игре с более чем одним игроком множество дележей бесконечно
( u(1) + a1 , u(2) + a2 , ... , u(n) +an )
где
ai ³ 0 ( i Î N ) , u(N) — > 0
Кооперативная игра с множеством игроков N и характеристической функцией u называется стратегически эквивалентной игрой с тем же множеством игроков и характеристической функцией u1 , если найдутся такие к > 0 и произвольные вещественные Ci ( iÎN ), что для любой коалиции К Ì N имеет место равенство:
u1(K) = k u (K) +
Смысл определения стратегической эквивалентности кооперативных игр (с.э.к.и.) состоит в том что характеристические функции с.э.к.и. отличаются только масштабом измерения выигрышей k и начальным капиталом Ci . Стратегическая эквивалентность кооперативных игр с характеристическими функциями u и u1 обозначается так u~u1. Часто вместо стратегической эквивалентности кооперативных игр говорят о стратегической эквивалентности их характеристических функций .
Справедливы следующие свойства для стратегических эквивалентных игр:
1. Рефлексивность, т.е. каждая характеристическая функция эквивалентна себе u~u.
2. Симметрия, т.е. если u~u1, то u1~u.
3. Транзитивность, т.е. если u~u1 и u1~u2, то u~u2.
Из свойств рефлексивности, симметрии и транзитивности вытекает, что множество всех характеристических функций единственным образом распадается на попарно непересекающиеся классы, которые называются классами стратегической эквивалентности......


Толық нұсқасын 30 секундтан кейін жүктей аласыз!!!


Қарап көріңіз 👇


Пайдалы сілтемелер:
» Туған күнге 99 тілектер жинағы: өз сөзімен, қысқаша, қарапайым туған күнге тілек
» Абай Құнанбаев барлық өлеңдер жинағын жүктеу, оқу
» Дастархан батасы: дастарханға бата беру, ас қайыру