Метод сеток для задачи Дирихле
С дифференциальными уравнениями в частных производных и интегральными уравнениями приходятся встречаться в самых разнообразных областях естествознания, причем получить их решение в явном виде, в виде конечной формулы, удается только в самых простейших случаях.
В связи с этим особое значение приобретают приближенные методы решения различных задач для дифференциальных уравнений в частных производных, систем дифференциальных уравнений в частных производных и интегральных уравнений или, как часто говорят, задач математической физики.
Важное место в теории дифференциальных уравнений с частными производными эллиптического типа занимает метод сеток, возникающее преимущественно в ходе решения физических задач. Исследование таких задач связано с именами Волкова Е. А. [8], Мамедова Я. Д., Рябенькова В. С. и Филиппова Ф. А. [19], Березина И. С. и Жидкова Н. П. [5], Самарского А. А. [21].
В данной дипломной работе рассмотрены некоторые наиболее распространенные методы решения задач математической физики. В основном это методы решения задач для линейных дифференциальных уравнений в частных производных второго порядка с двумя независимыми переменными эллиптического типа и вопросы сходимости и устойчивости разностных схем для уравнений эллиптического типа на примере задачи Дирихле для уравнения Пуассона.
Как и в случае обыкновенных дифференциальных уравнений, приближенные методы решения различных задач для дифференциальных уравнений в частных производных можно разбить на две группы:
1) методы, в которых приближенное решение получается в аналитической форме, например в виде отрезка некоторого ряда, и
2) методы, с помощью которых можно получить таблицу приближенных значений искомого решения в некоторых точках рассматриваемой области, - численные методы.
К первой группе относится прежде всего метод Фурье решения краевых задач для дифференциальных уравнений в частных производных, при применении которого точное решение получается в виде некоторого ряда, а за приближенное решение может быть принята сумма некоторого числа первых его членов.
Наиболее широко распространенным методом численного решения задач для дифференциальных уравнений в частных производных является метод сеток, или метод конечных разностей, а также метод характеристик решения уравнений, который в сущности также является конечноразностным методом, только в этом методе дифференциальное уравнение в частных производных предварительно сводится к эквивалентной ей системе обыкновенных дифференциальных уравнений, которая и решается разностным методом [26]. Описанию метода сеток для решения некоторых задач математической физики в основном и посвящена данная дипломная работа.....
В связи с этим особое значение приобретают приближенные методы решения различных задач для дифференциальных уравнений в частных производных, систем дифференциальных уравнений в частных производных и интегральных уравнений или, как часто говорят, задач математической физики.
Важное место в теории дифференциальных уравнений с частными производными эллиптического типа занимает метод сеток, возникающее преимущественно в ходе решения физических задач. Исследование таких задач связано с именами Волкова Е. А. [8], Мамедова Я. Д., Рябенькова В. С. и Филиппова Ф. А. [19], Березина И. С. и Жидкова Н. П. [5], Самарского А. А. [21].
В данной дипломной работе рассмотрены некоторые наиболее распространенные методы решения задач математической физики. В основном это методы решения задач для линейных дифференциальных уравнений в частных производных второго порядка с двумя независимыми переменными эллиптического типа и вопросы сходимости и устойчивости разностных схем для уравнений эллиптического типа на примере задачи Дирихле для уравнения Пуассона.
Как и в случае обыкновенных дифференциальных уравнений, приближенные методы решения различных задач для дифференциальных уравнений в частных производных можно разбить на две группы:
1) методы, в которых приближенное решение получается в аналитической форме, например в виде отрезка некоторого ряда, и
2) методы, с помощью которых можно получить таблицу приближенных значений искомого решения в некоторых точках рассматриваемой области, - численные методы.
К первой группе относится прежде всего метод Фурье решения краевых задач для дифференциальных уравнений в частных производных, при применении которого точное решение получается в виде некоторого ряда, а за приближенное решение может быть принята сумма некоторого числа первых его членов.
Наиболее широко распространенным методом численного решения задач для дифференциальных уравнений в частных производных является метод сеток, или метод конечных разностей, а также метод характеристик решения уравнений, который в сущности также является конечноразностным методом, только в этом методе дифференциальное уравнение в частных производных предварительно сводится к эквивалентной ей системе обыкновенных дифференциальных уравнений, которая и решается разностным методом [26]. Описанию метода сеток для решения некоторых задач математической физики в основном и посвящена данная дипломная работа.....
Дипломная работа (бесплатно)