Влияния магнитного поля на реологические свойства нефти
Содержание
Введение
В настоящее время увеличивается добыча высокопарафинистых и высоковязких нефтей, характеризующиеся высокой температурой застывания и аномально высокой вязкостью. Такие нефти в процессе добычи, транспорта и хранения с понижением температуры значительно ухудшают свои реологические характеристики. Это приводит к повышенному износу оборудования, дополнительным материальным затратам и ухудшению экологической ситуации. Чтобы предотвратить проблемы, возникающие при добыче, хранении и трубопроводном транспорте высоковязких и высокозастывающих нефтей, обычно используются такие способы улучшения реологических параметров как смешение вязких и высокозастывающих нефтей с маловязкими, термообработка, газонасыщение нефти и смешение ее с водными растворами поверхностно-активных веществ. Эти методы предотвращения проблемы являются энергозатратными или требуют наличия развитой инфраструктуры на месторождениях. Для преодоления этих проблем в последние годы усилился интерес к малоэнергетическим воздействиям.
Актуальность исследования состоит в том, что энергия магнитного поля является одной из самых эффективных, экономичных и доступных видов энергии, с помощью которой возможно регулирование структурно -реологических свойств нефтей и нефтепродуктов. Установлено, что воздействие электромагнитного поля способствует существенному уменьшению парафиновых отложений. Такая возможность открыла бы качественно новую перспективу повышения эффективности, рентабельности газосепарационных установок, так как магнитные установки недорогостоящие, не требуют сколько-нибудь значительных затрат энергии и просты в практическом обслуживании.
Основной целью дипломной работы является изучение влияния магнитного поля на реологические свойства нефти. Для достижения цели были поставлены следующие задачи:
• установить степень влияния магнитной обработки на вязкость, температуру потери текучести, образование асфальтосмолопарафиновых отложений;
• подобрать наиболее значение индукции магнитного поля для магнитной обработки при котором достигается максимальный эффект;
Объектами работы являлись Западно-Казахстанская нефтесмесь на выходе из ГНПС «Узень», депрессорная присадка ClearFlowTM605.
ИЗУЧЕНИЕ ВЛИЯНИЯ МАГНИТНОГО ПОЛЯ НА РЕОЛОГИЧЕСКИЕ СВОЙСТВА НЕФТИ. (литературный обзор)
1.1 Современное представление о природе НДС
Нефти, газоконденсаты и продукты из них характеризуются сложным химическим составом и агрегатным состоянием отдельных компонентов, строением и свойствами. Нефти и нефтепродукты содержат углеводородные и неуглеводородные компоненты различной природы, молекулярной массы и строения. По химическому составу условно выделяют четыре основных составляющих групп: низкомолекулярные и высокомолекулярные углеводороды, смолисто-асфальтеновые вещества неуглеводородного характера, гетероатомные соединения. Физико-химические свойства зависят от количественного содержания в них этих компонентов, их качественных характеристик и степени взаимодействия [5]. Углеводородными компонентами нефтяных систем являются в основном представители трех классов соединений: алканов, циклоалканов и аренов, а также значительное количество смешанного гибридного строения. Алкены и алкадиены в природных нефтяных системах обычно не встречаются, однако могут содержаться в продуктах переработки нефти. Неуглеводородные соединения нефти представляют собой смолы и асфальтены [2].
Реальные нефтяные системы являются полигетерофазными дисперсными системами различных типов из-за их сложного строения. Нефтяными дисперсными системами являются парафиносодержащие нефти и нефтепродукты. Содержание парафинов в разных нефтях колеблется от долей до 20%. С понижением температуры из нефти выделяются кристаллы парафина, которые образуют структуры, меняющие в объеме размеры и количество. Под действием адгезионных сил часть жидкой фазы ориентируется вокруг надмолекулярных структур в виде сольватных слоев определенной толщины. При определенной низкой температуре, кристаллы парафинов сцепляются, и это приводит к возникновению пространственной гелеобразной структуры, в ячейках которых иммобилизована часть дисперсионной среды. Система при этом приобретает структурно-механическую прочность. Установлено, что присутствие сложных асфальтеновых веществ способствует стабилизации устойчивости дисперсий парафина [4,7].
Нефти и нефтепродукты с высоким содержанием ароматических соединений также являются нефтяными дисперсными системами, в которых высокомолекулярные арены и смолисто-асфальтеновые вещества являются образующими структурами, состав, устойчивость, размер и количество которых зависит от внешних условий [1].
Существует непосредственная связь между условиями формирования и разрушения надмолекулярных структур (ассоциатов, мицелл, ассоциативных комбинаций и т.д.) в нефтяных дисперсных системах (НДС) и поведением смолисто-асфальтеновых компонентов в различных технологических процессах.
В теории НДС существует понятие о сложных структурных частицах (ССЕ). Сложная структурная единица – это элемент дисперсной структуры нефтяных систем преимущественно сферической формы, способный к самостоятельному существованию при данных неизменных условиях и построенный из компонентов нефтяной системы в соответствии с их значением потенциала межмолекулярного взаимодействия. В составе ССЕ различают более упорядоченную внутреннюю область (или ядро), которая в большинстве случаев образована из высокомолекулярных алканов и полиареновых углеводородов и смолисто-асфальтеновых веществ, и сольватную оболочку, окружающую ядро и образованную из менее склонных к межмолекулярным взаимодействиям соединений (рис.1).
Рис. 1. Разновидности сложной структурной единицы:
а- пора (адсорбционно-сольватный слой на ее внутренней поверхности); б,в,г – ССЕ с ядром из пузырька, комплекса, агрегата соответственно (адсорбционно-сольватный слой на поверхности ядра); r и h – величины радиуса и адсорбционно-сольватного слоя ССЕ
Общие закономерности присущие адсорбционно-сольватным слоям в НДС:
1. Толщина адсорбционно-сольватного слоя h зависит от природы ядра, кривизны его поверхности и качества дисперсионной среды. В одной и той же дисперсионной среде при равных значениях размера ядра (r=const) h растет в ряду газ→жидкость→твердое тело. В такой же последовательности растет значение силового поля вокруг ядра ССЕ.
2. При изменении внешними воздействиями баланса сил в НДС представляется возможным регулировать геометрические размеры адсорбционно-сольватных слоев.
3. Изменение геометрических размеров адсорбционно-сольватного слоя влияет на свойства ССЕ и НДС. В связи с этим одни и те же соединения, находящиеся в адсорбционно-сольватном слое и дисперсной среде, принципиально отличаются по своим физико-химическим свойствам.
4. Избирательный период в результате внешних воздействи й соединений из дисперсионной среды в адсорбционно-сольватный слой и, наоборот, приводит к перераспределению углеводородов между фазами, что имеет важное значение для практики.
5. Наличие и значение толщины адсорбционно-сольватных слоев вокруг ядер ССЕ влияет на температуру фазовых переходов в НДС (температуры кипения, застывания, кристаллизации и др.).
Регулируя внешними воздействиями баланс сил в НДС, можно в широких пределах изменять размеры ССЕ и степень упорядоченности молекул в ней и существенно влиять на качество получаемых нефтепродуктов, на степень их кристалличности, что весьма важно при решении поставленных задач.
Было экспериментально подтверждено, что нефтяные системы являются термодинамически подвижными системами, и что именно парамагнитные молекулы и гомолитические процессы вызывают переорганизацию надмолекулярных структур НДС, т.е. определяют поведение системы целиком.
В работах доказывается существование в НДС молекул, которые при использовании внешних воздействий достаточно легко переходят из диамагнитного состояния в парамагнитное, а при снятии воздействий возвращаются в исходное. Ученые указывают, что процессы в НДС основаны на межмолекулярных взаимодействиях между парамагнитными молекулами (радикалами) и диамагнитными, благодаря их способности притягиваться или отталкивать.
С позиций коллоидной химии, нефть – это сложная многокомпонентная смесь, которая в зависимости от внешних условий проявляет свойства молекулярного раствора или дисперсной системы. В ряде работ, нефти и нефтепродукты рассматриваются как коллоидно – дисперсные системы, характеризующиеся сложной структурой, которая способна изменять свою внутреннюю организацию не только под влиянием внешних воздействий, но и с течением времени. При этом любой дисперсной системе, даже находящейся в состоянии равновесия, постоянно протекают процессы агрегации и дезагрегации.
Согласно представлениям профессора Ф.Г.Унгера дисперсная частица может быть представлена как центрально-симметрическое образование с плотным ядром, содержащим парамагнитные молекулы, вокруг которых группируются ароматические, нафтеновые и парафиновые углеводороды в соответствии со значениями потенциалов парного взаимодействия, с постепенным снижением плотности потенциала межмолекулярного взаимодействия от центра частицы к ее переферии. При этом дисперсная среда является также многокомпонентным нефтяным раствором.
Таким образом, можно констатировать, что, в связи с чрезвычайной сложностью строения НДС, на настоящий момент еще окончательно не сформировано единого мнения по этому вопросу. Дальнейшие исследования ученых в данном направлении могут внести определенный вклад в создание единой концепции формирования, строения, развития и преобразования нефтяных систем.
1.2 Смолисто-асфальтеновые компоненты нефти
Смолисто-асфальтеновые вещества (САВ) – высокомолекулярные гетероциклические соединения. Их содержание в нефти может доходить до 25-50% . Смолисто- асфальтеновые компоненты (САК) представляют собой не углеводородные высокомолекулярные соединения нефти, которые содержат до 88% углерода, до 10% водорода, и до 14% гетероатомов. В смолисто-асфальтеновой части сконцентрированы полностью все металлы (V, Ni, Fe, Cu, Mg, Ca, Ti, Mo и др). Считается, что асфальтены являются продуктами конденсации смол. Смолы и асфальтены, выделенные из одной и той же нефти, содержат одинаковые структурные элементы, различие носит количественный характер. При переходе от смол к асфальтенам возрастает ароматичность, снижается доля циклоалканового и алифатического углерода, увеличиваются доли алифатических групп. Существенное отличие смол от асфальтенов заключается в их растворимости и молекулярно-массовом распределении. Обычно к смолам относятся растворимые в углеводородах нефти высокомолекулярные гетероатомные полидисперсные бесструктурные соединения нефти, которые можно разделит на узкие фракции однотипных соединений.
Классификация асфальто-смолистых веществ:
1. Нейтральные смолы - соединения, растворимые в петролейном эфире и нефтяных фракциях, обладающие жидкой или полужидкой консистенцией; плотность их около 1,0.
2. Асфальтены - твердые вещества, нерастворимые в петролейном эфире, но растворимые в бензоле и соединениях ряда бензола, хлороформе, сероуглероде; плотность их более 1.
3. Карбены - вещества, нерастворимые в обычных растворителях и лишь частично растворимые в пиридине и сероуглероде.
4. Асфальтогеновые кислоты и их ангидриды - отличаются от нейтральных смол кислым характером, нерастворимостью в петролейном эфире и растворимостью в спирте.
5. Карбоиды – вещества, нерастворимые ни в одном растворителе.
В состав смол входит от 70 до 90 % всех гетероорганических соединений нефти. Смолы представляют собой темноокрашенные вещества, отличающиеся по консистенции (от смолообразных пластичной массы до хрупкого вещества), молекулярной массе, содержанию микроэлементов и гетероатомов, что определяется месторождением нефти.
Асфальтены и нейтральные смолы представляют собой кислородсодержащие полициклические соединения, имеющие не более одной двойной связи. Специфические реакции позволили определить в составе смол ароматические ядра, серу и азот, на основании чего их относят к нейтральным полициклическим гетеросоединениям.
Асфальтены – это наиболее высокомолекулярные гетероорганические вещества нефти, представляющие собой твердые продукты от черно-бурого до черного цвета. Свежевыделенные асфальтены хорошо растворяются в сероуглероде, хлороформе, четыреххлористом углероде, бензоле и его гомологах, циклогексане и ряде других растворителей, но не растворимы в низкомолекулярных алканах, диэтиловом эфире, ацетоне и др. Однако со временем, особенно под действием солнечного света, асфальтены теряют способность растворяться и в бензоле.
Смолы и асфальтены являются наиболее полярными составными частями нефти, что обусловлено наличием и гетероатомов и функциональных групп. Существенный вклад в поверхностную активность асфальтенов и смол вносят фенольногидроксильные и карбоксильные группы.
Превращение смол в асфальтены происходит также при сравнительно небольшом нагревании (300-350 ͦ С), но при условии, что содержание смол в смеси не ниже определенной критической концентрации (около 20-25 %).
Состав и свойства нефтяных смол зависят от химической природы нефти. Несмотря на различную природу нефтей различных месторождений, содержание углерода и водорода в смолах колеблется в сравнительно узких пределах (в % масс.) С – от 79 до 87, Н – от 9–11. В смолах нефтей различных месторождений неодинаковое количество гетероатомов. Так, содержание кислорода колеблется от 1 до 7% масс., серы от десятых долей процента до 7–10%. В некоторых смолах содержится азот (до 2%). Нефти алканового основания (парафинистые нефти) характеризуются высоким содержанием смол (46%) нейтрального характера. Основными структурными элементами молекулы нефтяных смол являются конденсированные циклические системы, в состав которых входят ароматические, циклоалкановые и гетероциклические кольца, соединённые между собой короткими алифатическими мостиками и имеющие по несколько алифатических, реже циклических заместителей в цикле. По Сергиенко С.Р., строение молекул смол можно представить одной из следующих формул (рис. 1):
Рис. 1. Строение молекул смол
Смолистые вещества термически и химически нестабильны, легко окисляются и конденсируются, превращаясь при этом в асфальтены.
Асфальтены являются более высокомолекулярными соединениями, чем смолы. Они отличаются от смол не только несколько меньшим содержанием водорода, но и более высоким содержанием гетероатомов. Предполагают, что асфальтены являются продуктами конденсации смол. На основании многочисленных исследований химического строения молекул асфальтенов считают, что последние представляют собой полициклическую, ароматическую, сильно конденсированную систему с короткими алифатическими заместителями у ароматических ядер. В молекулах асфальтенов присутствуют также пяти- и шестичленные гетероциклы. В зависимости от природы нефти количественное соотношение ароматических, нафтеновых и гетероциклических структурных элементов может меняться в широких пределах. Предложены следующие типы полициклических структур – звенья молекул смол и асфальтенов (рис. 2):
Рис.4. Типы полициклических структур
Кислород в асфальтенах входит не только в состав гетероциклов, но и в различные функциональные группы: гидроксильные, карбонильные, карбоксильные и сложноэфирные......
Введение
В настоящее время увеличивается добыча высокопарафинистых и высоковязких нефтей, характеризующиеся высокой температурой застывания и аномально высокой вязкостью. Такие нефти в процессе добычи, транспорта и хранения с понижением температуры значительно ухудшают свои реологические характеристики. Это приводит к повышенному износу оборудования, дополнительным материальным затратам и ухудшению экологической ситуации. Чтобы предотвратить проблемы, возникающие при добыче, хранении и трубопроводном транспорте высоковязких и высокозастывающих нефтей, обычно используются такие способы улучшения реологических параметров как смешение вязких и высокозастывающих нефтей с маловязкими, термообработка, газонасыщение нефти и смешение ее с водными растворами поверхностно-активных веществ. Эти методы предотвращения проблемы являются энергозатратными или требуют наличия развитой инфраструктуры на месторождениях. Для преодоления этих проблем в последние годы усилился интерес к малоэнергетическим воздействиям.
Актуальность исследования состоит в том, что энергия магнитного поля является одной из самых эффективных, экономичных и доступных видов энергии, с помощью которой возможно регулирование структурно -реологических свойств нефтей и нефтепродуктов. Установлено, что воздействие электромагнитного поля способствует существенному уменьшению парафиновых отложений. Такая возможность открыла бы качественно новую перспективу повышения эффективности, рентабельности газосепарационных установок, так как магнитные установки недорогостоящие, не требуют сколько-нибудь значительных затрат энергии и просты в практическом обслуживании.
Основной целью дипломной работы является изучение влияния магнитного поля на реологические свойства нефти. Для достижения цели были поставлены следующие задачи:
• установить степень влияния магнитной обработки на вязкость, температуру потери текучести, образование асфальтосмолопарафиновых отложений;
• подобрать наиболее значение индукции магнитного поля для магнитной обработки при котором достигается максимальный эффект;
Объектами работы являлись Западно-Казахстанская нефтесмесь на выходе из ГНПС «Узень», депрессорная присадка ClearFlowTM605.
ИЗУЧЕНИЕ ВЛИЯНИЯ МАГНИТНОГО ПОЛЯ НА РЕОЛОГИЧЕСКИЕ СВОЙСТВА НЕФТИ. (литературный обзор)
1.1 Современное представление о природе НДС
Нефти, газоконденсаты и продукты из них характеризуются сложным химическим составом и агрегатным состоянием отдельных компонентов, строением и свойствами. Нефти и нефтепродукты содержат углеводородные и неуглеводородные компоненты различной природы, молекулярной массы и строения. По химическому составу условно выделяют четыре основных составляющих групп: низкомолекулярные и высокомолекулярные углеводороды, смолисто-асфальтеновые вещества неуглеводородного характера, гетероатомные соединения. Физико-химические свойства зависят от количественного содержания в них этих компонентов, их качественных характеристик и степени взаимодействия [5]. Углеводородными компонентами нефтяных систем являются в основном представители трех классов соединений: алканов, циклоалканов и аренов, а также значительное количество смешанного гибридного строения. Алкены и алкадиены в природных нефтяных системах обычно не встречаются, однако могут содержаться в продуктах переработки нефти. Неуглеводородные соединения нефти представляют собой смолы и асфальтены [2].
Реальные нефтяные системы являются полигетерофазными дисперсными системами различных типов из-за их сложного строения. Нефтяными дисперсными системами являются парафиносодержащие нефти и нефтепродукты. Содержание парафинов в разных нефтях колеблется от долей до 20%. С понижением температуры из нефти выделяются кристаллы парафина, которые образуют структуры, меняющие в объеме размеры и количество. Под действием адгезионных сил часть жидкой фазы ориентируется вокруг надмолекулярных структур в виде сольватных слоев определенной толщины. При определенной низкой температуре, кристаллы парафинов сцепляются, и это приводит к возникновению пространственной гелеобразной структуры, в ячейках которых иммобилизована часть дисперсионной среды. Система при этом приобретает структурно-механическую прочность. Установлено, что присутствие сложных асфальтеновых веществ способствует стабилизации устойчивости дисперсий парафина [4,7].
Нефти и нефтепродукты с высоким содержанием ароматических соединений также являются нефтяными дисперсными системами, в которых высокомолекулярные арены и смолисто-асфальтеновые вещества являются образующими структурами, состав, устойчивость, размер и количество которых зависит от внешних условий [1].
Существует непосредственная связь между условиями формирования и разрушения надмолекулярных структур (ассоциатов, мицелл, ассоциативных комбинаций и т.д.) в нефтяных дисперсных системах (НДС) и поведением смолисто-асфальтеновых компонентов в различных технологических процессах.
В теории НДС существует понятие о сложных структурных частицах (ССЕ). Сложная структурная единица – это элемент дисперсной структуры нефтяных систем преимущественно сферической формы, способный к самостоятельному существованию при данных неизменных условиях и построенный из компонентов нефтяной системы в соответствии с их значением потенциала межмолекулярного взаимодействия. В составе ССЕ различают более упорядоченную внутреннюю область (или ядро), которая в большинстве случаев образована из высокомолекулярных алканов и полиареновых углеводородов и смолисто-асфальтеновых веществ, и сольватную оболочку, окружающую ядро и образованную из менее склонных к межмолекулярным взаимодействиям соединений (рис.1).
Рис. 1. Разновидности сложной структурной единицы:
а- пора (адсорбционно-сольватный слой на ее внутренней поверхности); б,в,г – ССЕ с ядром из пузырька, комплекса, агрегата соответственно (адсорбционно-сольватный слой на поверхности ядра); r и h – величины радиуса и адсорбционно-сольватного слоя ССЕ
Общие закономерности присущие адсорбционно-сольватным слоям в НДС:
1. Толщина адсорбционно-сольватного слоя h зависит от природы ядра, кривизны его поверхности и качества дисперсионной среды. В одной и той же дисперсионной среде при равных значениях размера ядра (r=const) h растет в ряду газ→жидкость→твердое тело. В такой же последовательности растет значение силового поля вокруг ядра ССЕ.
2. При изменении внешними воздействиями баланса сил в НДС представляется возможным регулировать геометрические размеры адсорбционно-сольватных слоев.
3. Изменение геометрических размеров адсорбционно-сольватного слоя влияет на свойства ССЕ и НДС. В связи с этим одни и те же соединения, находящиеся в адсорбционно-сольватном слое и дисперсной среде, принципиально отличаются по своим физико-химическим свойствам.
4. Избирательный период в результате внешних воздействи й соединений из дисперсионной среды в адсорбционно-сольватный слой и, наоборот, приводит к перераспределению углеводородов между фазами, что имеет важное значение для практики.
5. Наличие и значение толщины адсорбционно-сольватных слоев вокруг ядер ССЕ влияет на температуру фазовых переходов в НДС (температуры кипения, застывания, кристаллизации и др.).
Регулируя внешними воздействиями баланс сил в НДС, можно в широких пределах изменять размеры ССЕ и степень упорядоченности молекул в ней и существенно влиять на качество получаемых нефтепродуктов, на степень их кристалличности, что весьма важно при решении поставленных задач.
Было экспериментально подтверждено, что нефтяные системы являются термодинамически подвижными системами, и что именно парамагнитные молекулы и гомолитические процессы вызывают переорганизацию надмолекулярных структур НДС, т.е. определяют поведение системы целиком.
В работах доказывается существование в НДС молекул, которые при использовании внешних воздействий достаточно легко переходят из диамагнитного состояния в парамагнитное, а при снятии воздействий возвращаются в исходное. Ученые указывают, что процессы в НДС основаны на межмолекулярных взаимодействиях между парамагнитными молекулами (радикалами) и диамагнитными, благодаря их способности притягиваться или отталкивать.
С позиций коллоидной химии, нефть – это сложная многокомпонентная смесь, которая в зависимости от внешних условий проявляет свойства молекулярного раствора или дисперсной системы. В ряде работ, нефти и нефтепродукты рассматриваются как коллоидно – дисперсные системы, характеризующиеся сложной структурой, которая способна изменять свою внутреннюю организацию не только под влиянием внешних воздействий, но и с течением времени. При этом любой дисперсной системе, даже находящейся в состоянии равновесия, постоянно протекают процессы агрегации и дезагрегации.
Согласно представлениям профессора Ф.Г.Унгера дисперсная частица может быть представлена как центрально-симметрическое образование с плотным ядром, содержащим парамагнитные молекулы, вокруг которых группируются ароматические, нафтеновые и парафиновые углеводороды в соответствии со значениями потенциалов парного взаимодействия, с постепенным снижением плотности потенциала межмолекулярного взаимодействия от центра частицы к ее переферии. При этом дисперсная среда является также многокомпонентным нефтяным раствором.
Таким образом, можно констатировать, что, в связи с чрезвычайной сложностью строения НДС, на настоящий момент еще окончательно не сформировано единого мнения по этому вопросу. Дальнейшие исследования ученых в данном направлении могут внести определенный вклад в создание единой концепции формирования, строения, развития и преобразования нефтяных систем.
1.2 Смолисто-асфальтеновые компоненты нефти
Смолисто-асфальтеновые вещества (САВ) – высокомолекулярные гетероциклические соединения. Их содержание в нефти может доходить до 25-50% . Смолисто- асфальтеновые компоненты (САК) представляют собой не углеводородные высокомолекулярные соединения нефти, которые содержат до 88% углерода, до 10% водорода, и до 14% гетероатомов. В смолисто-асфальтеновой части сконцентрированы полностью все металлы (V, Ni, Fe, Cu, Mg, Ca, Ti, Mo и др). Считается, что асфальтены являются продуктами конденсации смол. Смолы и асфальтены, выделенные из одной и той же нефти, содержат одинаковые структурные элементы, различие носит количественный характер. При переходе от смол к асфальтенам возрастает ароматичность, снижается доля циклоалканового и алифатического углерода, увеличиваются доли алифатических групп. Существенное отличие смол от асфальтенов заключается в их растворимости и молекулярно-массовом распределении. Обычно к смолам относятся растворимые в углеводородах нефти высокомолекулярные гетероатомные полидисперсные бесструктурные соединения нефти, которые можно разделит на узкие фракции однотипных соединений.
Классификация асфальто-смолистых веществ:
1. Нейтральные смолы - соединения, растворимые в петролейном эфире и нефтяных фракциях, обладающие жидкой или полужидкой консистенцией; плотность их около 1,0.
2. Асфальтены - твердые вещества, нерастворимые в петролейном эфире, но растворимые в бензоле и соединениях ряда бензола, хлороформе, сероуглероде; плотность их более 1.
3. Карбены - вещества, нерастворимые в обычных растворителях и лишь частично растворимые в пиридине и сероуглероде.
4. Асфальтогеновые кислоты и их ангидриды - отличаются от нейтральных смол кислым характером, нерастворимостью в петролейном эфире и растворимостью в спирте.
5. Карбоиды – вещества, нерастворимые ни в одном растворителе.
В состав смол входит от 70 до 90 % всех гетероорганических соединений нефти. Смолы представляют собой темноокрашенные вещества, отличающиеся по консистенции (от смолообразных пластичной массы до хрупкого вещества), молекулярной массе, содержанию микроэлементов и гетероатомов, что определяется месторождением нефти.
Асфальтены и нейтральные смолы представляют собой кислородсодержащие полициклические соединения, имеющие не более одной двойной связи. Специфические реакции позволили определить в составе смол ароматические ядра, серу и азот, на основании чего их относят к нейтральным полициклическим гетеросоединениям.
Асфальтены – это наиболее высокомолекулярные гетероорганические вещества нефти, представляющие собой твердые продукты от черно-бурого до черного цвета. Свежевыделенные асфальтены хорошо растворяются в сероуглероде, хлороформе, четыреххлористом углероде, бензоле и его гомологах, циклогексане и ряде других растворителей, но не растворимы в низкомолекулярных алканах, диэтиловом эфире, ацетоне и др. Однако со временем, особенно под действием солнечного света, асфальтены теряют способность растворяться и в бензоле.
Смолы и асфальтены являются наиболее полярными составными частями нефти, что обусловлено наличием и гетероатомов и функциональных групп. Существенный вклад в поверхностную активность асфальтенов и смол вносят фенольногидроксильные и карбоксильные группы.
Превращение смол в асфальтены происходит также при сравнительно небольшом нагревании (300-350 ͦ С), но при условии, что содержание смол в смеси не ниже определенной критической концентрации (около 20-25 %).
Состав и свойства нефтяных смол зависят от химической природы нефти. Несмотря на различную природу нефтей различных месторождений, содержание углерода и водорода в смолах колеблется в сравнительно узких пределах (в % масс.) С – от 79 до 87, Н – от 9–11. В смолах нефтей различных месторождений неодинаковое количество гетероатомов. Так, содержание кислорода колеблется от 1 до 7% масс., серы от десятых долей процента до 7–10%. В некоторых смолах содержится азот (до 2%). Нефти алканового основания (парафинистые нефти) характеризуются высоким содержанием смол (46%) нейтрального характера. Основными структурными элементами молекулы нефтяных смол являются конденсированные циклические системы, в состав которых входят ароматические, циклоалкановые и гетероциклические кольца, соединённые между собой короткими алифатическими мостиками и имеющие по несколько алифатических, реже циклических заместителей в цикле. По Сергиенко С.Р., строение молекул смол можно представить одной из следующих формул (рис. 1):
Рис. 1. Строение молекул смол
Смолистые вещества термически и химически нестабильны, легко окисляются и конденсируются, превращаясь при этом в асфальтены.
Асфальтены являются более высокомолекулярными соединениями, чем смолы. Они отличаются от смол не только несколько меньшим содержанием водорода, но и более высоким содержанием гетероатомов. Предполагают, что асфальтены являются продуктами конденсации смол. На основании многочисленных исследований химического строения молекул асфальтенов считают, что последние представляют собой полициклическую, ароматическую, сильно конденсированную систему с короткими алифатическими заместителями у ароматических ядер. В молекулах асфальтенов присутствуют также пяти- и шестичленные гетероциклы. В зависимости от природы нефти количественное соотношение ароматических, нафтеновых и гетероциклических структурных элементов может меняться в широких пределах. Предложены следующие типы полициклических структур – звенья молекул смол и асфальтенов (рис. 2):
Рис.4. Типы полициклических структур
Кислород в асфальтенах входит не только в состав гетероциклов, но и в различные функциональные группы: гидроксильные, карбонильные, карбоксильные и сложноэфирные......
Толық нұсқасын 30 секундтан кейін жүктей аласыз!!!
Қарап көріңіз 👇
Пайдалы сілтемелер:
» Туған күнге 99 тілектер жинағы: өз сөзімен, қысқаша, қарапайым туған күнге тілек
» Абай Құнанбаев барлық өлеңдер жинағын жүктеу, оқу
» Дастархан батасы: дастарханға бата беру, ас қайыру
Ілмектер: скачать бесплатно Влияния магнитного поля на реологические свойства нефти курсовую работу, база готовых курсовых работ бесплатно, готовые курсовые работы Влияния магнитного поля на реологические свойства нефти скачать бесплатно, курсовая работа производство скачать бесплатно