Теория электрических цепей

Теория №1
Несинусоидальный ток.
Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.
В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).
Характеристики несинусоидальных величин
Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):
Максимальное значение - .
Действующее значение - .
Среднее по модулю значение - .
Среднее за период значение (постоянная составляющая) - .
Коэффициент амплитуды (отношение максимального значения к действующему) - .
Коэффициент формы (отношение действующего значения к среднему по модулю) -.
Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) -
Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) - .
Разложение периодических несинусоидальных кривых в ряд Фурье.
Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:.....
Курсовая работа (бесплатно)
Толық