Бағдарламалау | Ықтималдылық туралы түсінік
К і р і с п е
Қазіргі уақытта ықтималдықтар теориясы барлық жаратылыстану, экономикалық және техникалық ғылымдар ғана емес, тіпті математикадан алшақ деп саналатын тіл ғылымына, педагогика мен психологияға, сондай-ақ социологияға, археологияға еніп, ортақ тіл табысып, ішкі құрылыс заңдарын ашатын пәрменді құралға айналып келеді кеңейтіліп, анықтала түседі де, формальданады. Оқиға ұғымы ықтималдылықтың . Ықтималдықтар теориясының бірінші негізгі ұғымы- оқиға бірте-бірте классикалық анықтамасында бастапқы ұғым болып, формальды логикалық тұрғыдан анықталмайтын жиын ұғымы ретінде түсіндірілсе, аксиоматикалық тұрғыдан оған анықтама берілді. Сондықтан оқиға ұғымы туралы мына жағдайларды ескеру қажет. Оқиғалар мен олардың арасындағы қатыстарды үш рет қайталап отырғанымызды аңғару қиын емес.
Ықтималдылық формальданған, бұл жағдайда ықтималдықтың классикалық, статистикалық (жиіліктік),, геометриялық және аксиоматикалық анықтамалары бір-бірімен салыстыру және жетімсіздігін толықтыру арқылы түсіндіріледі.
Негізгі теоремалардың дәлелдемесі ықтималдылықтың классикалық анықтамасы негізінде келтірілді. Комбинаторика ұғымы қарапайым статистикалық мәліметтер арқылы сипатталады. Мұнда қайталама және қайталанбайтын таңдаамалар сияқты статистика терминдерін енгіземіз. Комбинаторика ұғымы ықтималдықтарды есептеуге кең қолданылады.
Ықтималдық ұғымдарының тарихи дамуы мен ғыылым ретінде қалыптасуы бірнеше сатыдан өтеді. Бұл ғылымның дамуына Европа ғалымдары Б.Паскаль (1623-1662), П. Ферма (1601-1665), Х. Гьюгенс (1629-1695), Я. Бернулли (1654-1775), А. Муавр (1667-1754), П. Лаплас (1749-1827), Ф. Гаусс (1777-1855), С Пуассон (1781-1840) және орыс ғалымы Буяковский (1804-1889) көп үлес қосты. ....
Қазіргі уақытта ықтималдықтар теориясы барлық жаратылыстану, экономикалық және техникалық ғылымдар ғана емес, тіпті математикадан алшақ деп саналатын тіл ғылымына, педагогика мен психологияға, сондай-ақ социологияға, археологияға еніп, ортақ тіл табысып, ішкі құрылыс заңдарын ашатын пәрменді құралға айналып келеді кеңейтіліп, анықтала түседі де, формальданады. Оқиға ұғымы ықтималдылықтың . Ықтималдықтар теориясының бірінші негізгі ұғымы- оқиға бірте-бірте классикалық анықтамасында бастапқы ұғым болып, формальды логикалық тұрғыдан анықталмайтын жиын ұғымы ретінде түсіндірілсе, аксиоматикалық тұрғыдан оған анықтама берілді. Сондықтан оқиға ұғымы туралы мына жағдайларды ескеру қажет. Оқиғалар мен олардың арасындағы қатыстарды үш рет қайталап отырғанымызды аңғару қиын емес.
Ықтималдылық формальданған, бұл жағдайда ықтималдықтың классикалық, статистикалық (жиіліктік),, геометриялық және аксиоматикалық анықтамалары бір-бірімен салыстыру және жетімсіздігін толықтыру арқылы түсіндіріледі.
Негізгі теоремалардың дәлелдемесі ықтималдылықтың классикалық анықтамасы негізінде келтірілді. Комбинаторика ұғымы қарапайым статистикалық мәліметтер арқылы сипатталады. Мұнда қайталама және қайталанбайтын таңдаамалар сияқты статистика терминдерін енгіземіз. Комбинаторика ұғымы ықтималдықтарды есептеуге кең қолданылады.
Ықтималдық ұғымдарының тарихи дамуы мен ғыылым ретінде қалыптасуы бірнеше сатыдан өтеді. Бұл ғылымның дамуына Европа ғалымдары Б.Паскаль (1623-1662), П. Ферма (1601-1665), Х. Гьюгенс (1629-1695), Я. Бернулли (1654-1775), А. Муавр (1667-1754), П. Лаплас (1749-1827), Ф. Гаусс (1777-1855), С Пуассон (1781-1840) және орыс ғалымы Буяковский (1804-1889) көп үлес қосты. ....
Курстық жұмыстар