Однородные и неоднородные линейные уравнения второго порядка функция Грина

На [a,b] рассматривается линейная двухточечная краевая задача
(d^2 y)/(dt^2 )+q_1 (t) dy/dt+q_2 (t)y=f(t) (1.1)
y(a)=y^0, y(b)=y^1, (1.2)
где q_1 (t),q_2 (t),f(t) непрерывны на [a,b].y^0,y^1- заданные числа.
Целью работы являются: а)выяснение необходимых и достойных условий однозначной разрешимости задачи (1.1), (1.2); б)построение функции Грина; в)нахождение решений.
Решением задачи (1.1),(1.2) будет непрерывная, дважды дифференцируемая функция удовлетворяющая уравнению (1.1) и краевым условиям (1.2).
В дальнейшем будет показано, что для интегрирования неоднородного линейного уравнения (1.1) достаточно уметь найти общее решение соответствующего однородного уравнения
(d^2 y)/(dt^2 )+q_1 (t) dy/dt+q_2 (t)y=0 (1.3)
Начнем изложение общей теории линейных уравнений второго порядка с изучения однородных линейных уравнений (1.3).

§1.Однородное линейное уравнение второго порядка
Мы должны найти все вещественные решения уравнения (1.3). Как известно, для решения этой задачи иногда оказывается выгодно сначала найти некоторые комплексные решения.
Прежде чем дать понятие о комплексном решении уравнения (1.3) дадим определение комплексной функции вещественной переменной.
Функцию
z(t)=u(t)+iu(t),
где u(t) и ϑ(t) - вещественные функции от вещественной переменной t,a i=√(-1) будем называть комплексной функцией от вещественной переменной t. Функции u(t) и ϑ(t) называются соответственно вещественной и мнимой частями комплексной функции z(t). Примером такой функции является
e^it=cost+isint,
Или функция более общего вида e^αt,где α=a+ib, причем a и b – вещественные:
e^αt=e^(a+it)t=e^at∙ e^ibt=e^at (cosbt+isinbt)=e^at cosbt+〖ie〗^at sinbt
Производная n-го порядка от функции z(t) по вещественной переменной t определяется так:
z^((n) ) (t)=u^((n) ) (t)+〖iϑ〗^((n) ) (t)
Дадим теперь понятие о комплексном решении уравнения (1.3). Комплексная функция от вещественной переменной t
y(t) 〖=y〗_1 (t)+〖iy〗_2 (t) (1.4)
называется комплексным решением однородного линейного уравнения (1.3), если подстановка ее в уравнение (1.3) обращает это уравнение в тождество, т.е. если
d^2/〖dt〗^2 (y_1 (t)+〖iy〗_2 (t))+q_1 (t) d/dt (y_2 (t)+〖iy〗_2 (t))+q_2 (t)(y_1 (t)+〖iy〗_2 (t))≡0 (1.5)
Покажем, что всякое решение уравнения (1.3) порождает два вещественных решения этого уравнения, а именно: если комплексная функция y(t) является решением уравнения (1.3), то ее вещественная и мнимая части являются вещественными решениями этого уравнения.....
Дипломная работа (бесплатно)
Толық